首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5929篇
  免费   439篇
  国内免费   15篇
化学   4737篇
晶体学   36篇
力学   69篇
数学   696篇
物理学   845篇
  2023年   57篇
  2022年   57篇
  2021年   107篇
  2020年   197篇
  2019年   187篇
  2018年   77篇
  2017年   98篇
  2016年   266篇
  2015年   251篇
  2014年   300篇
  2013年   326篇
  2012年   466篇
  2011年   498篇
  2010年   289篇
  2009年   240篇
  2008年   373篇
  2007年   352篇
  2006年   319篇
  2005年   258篇
  2004年   243篇
  2003年   199篇
  2002年   193篇
  2001年   107篇
  2000年   85篇
  1999年   75篇
  1998年   69篇
  1997年   72篇
  1996年   60篇
  1995年   70篇
  1994年   79篇
  1993年   46篇
  1992年   44篇
  1991年   42篇
  1990年   30篇
  1989年   44篇
  1988年   27篇
  1987年   24篇
  1986年   17篇
  1985年   11篇
  1984年   13篇
  1983年   8篇
  1982年   9篇
  1981年   15篇
  1980年   19篇
  1979年   12篇
  1978年   16篇
  1977年   13篇
  1976年   7篇
  1975年   3篇
  1959年   2篇
排序方式: 共有6383条查询结果,搜索用时 15 毫秒
51.
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter-the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.  相似文献   
52.
A capillary electrophoretic method with UV detection at 278 nm has been developed for analysis of the immunosuppressant rapamycin (sirolimus) in human blood at low microgram per liter levels. Separation has been achieved in an acidic carrier electrolyte containing sodium dodecylsulfate and 30% (v/v) acetonitrile. For sample clean-up and preconcentration, an off-line solid-phase extraction step using a silica-based reversed-phase material and an on-capillary focussing technique were employed. The latter allows the injection of increased sample volumes without excessive band broadening. Although this new method is less sensitive than existing liquid chromatographic procedures combined with mass spectrometry, it is fully suited to routine analysis of rapamycin in blood from patients treated with this drug. Last but not least the low costs make it an attractive alternative to established methods.  相似文献   
53.
A template-directed dynamic clipping procedure has generated a library of nine [2]rotaxanes that have been formed from three dialkylammonium salts-acting as the dumbbell-shaped components-and three dynamic, imino bond-containing, [24]crown-8-like macrocycles-acting as the ring-shaped components-which are themselves assembled from three dialdehydes and one diamine. The rates of formation of these [2]rotaxanes differ dramatically, from minutes to days depending on the choice of dialkylammonium ion and dialdehyde, as do their thermodynamic stabilities. Generally, [2]rotaxanes formed by using 2,6-diformylpyridine as the dialdehyde component, or bis(3,5-bis(trifluoromethyl)benzyl)ammonium hexafluorophosphate as the dumbbell-shaped component, assembled the most rapidly. Those rotaxanes containing this particular electron-deficient dumbbell-shaped unit, or 2,5-diformylfuran units in the macroring, were the most stable thermodynamically. The relative thermodynamic stabilities of all nine of the [2]rotaxanes were determined by competition experiments that were monitored by (1)H NMR spectroscopy.  相似文献   
54.
55.
56.
The tetraphosphides (tBu3Si)3P4M3 (M = Li, Na) and (tBu2PhSi)3P4Na3 have been synthesized in high yield from the reaction of 3 equivalents of the silanides tBu3SiM (M = Li, Na) and tBu2PhSiNa with P4 in benzene. (tBu3Si)3P4M3 (M = Li, Na) are transformed into the unsaturated triphosphides (tBu3Si)2P3M (M = Li, Na) and tBu3SiPM2 in tetrahydrofuran at ambient temperature.  相似文献   
57.
Synthesis and Molekular Structures of N‐substituted Diethylgallium‐2‐pyridylmethylamides (2‐Pyridylmethyl)(tert‐butyldimethylsilyl)amine ( 1a ) and (2‐pyridylmethyl)‐di(tert‐butyl)silylamine ( 1b ) form with triethylgallane the corresponding red adducts 2a and 2b via an additional nitrogen‐gallium bond. These oily compounds decompose during distillation. Heating under reflux in toluene leads to the elimination of ethane and the formation of the red oils of [(2‐pyridylmethyl)(tert‐butyldimethylsilyl)amido]diethylgallane ( 3a ) and [(2‐pyridylmethyl)‐di(tert‐butyl)silylamido]diethylgallane ( 3b ). In order to investigate the thermal stability solvent‐free 3a is heated up to 400 °C. The elimination of ethane is observed again and the C‐C coupling product N, N′‐Bis(diethylgallyl)‐1, 2‐dipyridyl‐1, 2‐bis(tert‐butyldimethylsilyl)amido]ethan ( 4 ) is found in the residue. Substitution of the silyl substituents by another 2‐pyridylmethyl group and the reaction of this bis(2‐pyridylmethyl)amine with GaEt3 yield triethylgallane‐diethylgallium‐bis(2‐pyridylmethyl)amide ( 5 ). The metalation product adds immediately another equivalent of triethylgallane regardless of the stoichiometry. The reaction of GaEt3 with 2‐pyridylmethanol gives quantitatively colorless 2‐pyridylmethanolato diethylgallane ( 6 ).  相似文献   
58.
In the presence of [Ru(terpyridine)(2,6‐pyridinedicarboxylate)], aliphatic and benzylic alcohols are oxidized to the corresponding aldehydes or ketones with high selectivity by using hydrogen peroxide as the oxidant. There is no need for the addition of co‐catalysts or organic solvents. By applying an optimized reaction protocol, high catalyst productivity (turnover number>10 000) and activity (turnover frequency up to 14 800 h?1) has been achieved.  相似文献   
59.
The separation of cis/trans isomers of β-carotene has been performed with a C30 stationary phase employing 1H NMR spectroscopy as an on-line detection technique. 1D as well as 2D NMR spectra have been recorded in the stopped-flow mode for the predominant chromatographic peaks. Structural assignment of the five identified isomers was performed via comparison of simulated 1D 1H NMR spectra on the basis of the structures of β-carotene cis/trans isomers with the experimental data, and also by the analysis of the proton-proton connectivities in the 2D NMR spectra of three isomers with the highest concentration. The chromatographic retention behaviour of the isomers agreed well with previously reported data. The advantage of the applied hyphenated coupling technique compared to conventional off-line techniques lies in the fact that chromatographic separation and NMR detection are performed in a closed system, so that reisomerization of the separated compounds is inhibited. Received: 29 May 1996 / Revised: 1 July 1996 / Accepted: 4 July 1996  相似文献   
60.
The surface and materials science of tin oxide   总被引:3,自引:0,他引:3  
The study of tin oxide is motivated by its applications as a solid state gas sensor material, oxidation catalyst, and transparent conductor. This review describes the physical and chemical properties that make tin oxide a suitable material for these purposes. The emphasis is on surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface science studies with the broader field of materials science of tin oxide. The key for understanding many aspects of SnO2 surface properties is the dual valency of Sn. The dual valency facilitates a reversible transformation of the surface composition from stoichiometric surfaces with Sn4+ surface cations into a reduced surface with Sn2+ surface cations depending on the oxygen chemical potential of the system. Reduction of the surface modifies the surface electronic structure by formation of Sn 5s derived surface states that lie deep within the band gap and also cause a lowering of the work function. The gas sensing mechanism appears, however, only to be indirectly influenced by the surface composition of SnO2. Critical for triggering a gas response are not the lattice oxygen concentration but chemisorbed (or ionosorbed) oxygen and other molecules with a net electric charge. Band bending induced by charged molecules cause the increase or decrease in surface conductivity responsible for the gas response signal. In most applications tin oxide is modified by additives to either increase the charge carrier concentration by donor atoms, or to increase the gas sensitivity or the catalytic activity by metal additives. Some of the basic concepts by which additives modify the gas sensing and catalytic properties of SnO2 are discussed and the few surface science studies of doped SnO2 are reviewed. Epitaxial SnO2 films may facilitate the surface science studies of doped films in the future. To this end film growth on titania, alumina, and Pt(1 1 1) is reviewed. Thin films on alumina also make promising test systems for probing gas sensing behavior. Molecular adsorption and reaction studies on SnO2 surfaces have been hampered by the challenges of preparing well-characterized surfaces. Nevertheless some experimental and theoretical studies have been performed and are reviewed. Of particular interest in these studies was the influence of the surface composition on its chemical properties. Finally, the variety of recently synthesized tin oxide nanoscopic materials is summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号